0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Vision-based automated crack detection using convolutional neural networks for condition assessment of infrastructure

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 4, v. 20
Page(s): 147592172096544
DOI: 10.1177/1475921720965445
Abstrait:

With the growing number of aging infrastructure across the world, there is a high demand for a more effective inspection method to assess its conditions. Routine assessment of structural conditions is a necessity to ensure the safety and operation of critical infrastructure. However, the current practice to detect structural damages, such as cracks, depends on human visual observation methods, which are prone to efficiency, cost, and safety concerns. In this article, we present an automated detection method, which is based on convolutional neural network models and a non-overlapping window-based approach, to detect crack/non-crack conditions of concrete structures from images. To this end, we construct a data set of crack/non-crack concrete structures, comprising 32,704 training patches, 2074 validation patches, and 6032 test patches. We evaluate the performance of our approach using 15 state-of-the-art convolutional neural network models in terms of number of parameters required to train the models, area under the curve, and inference time. Our approach provides over 95% accuracy and over 87% precision in detecting the cracks for most of the convolutional neural network models. We also show that our approach outperforms existing models in literature in terms of accuracy and inference time. The best performance in terms of area under the curve was achieved by visual geometry group-16 model (area under the curve = 0.9805) and best inference time was provided by AlexNet (0.32 s per image in size of 256 × 256 × 3). Our evaluation shows that deeper convolutional neural network models have higher detection accuracies; however, they also require more parameters and have higher inference time. We believe that this study would act as a benchmark for real-time, automated crack detection for condition assessment of infrastructure.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921720965445.
  • Informations
    sur cette fiche
  • Reference-ID
    10562537
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    09.07.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine