0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Vibration Analysis of Complete Conical Shells with Variable Thickness

Auteur(s):
Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 4, v. 14
Page(s): 1450001
DOI: 10.1142/s0219455414500011
Abstrait:

A three-dimensional (3D) method of analysis is presented for determining the free vibration frequencies of complete (not truncated) conical shells with linearly varying thickness. The complete conical shells free or clamped at the bottom edge with a free vertex are investigated. Unlike conventional shell theories, which are mathematically 2D, the present method is based upon the 3D dynamic equations of elasticity. Displacement components ur, uθand uzin the radial, circumferential and axial directions, respectively, are taken to be periodic in θ and in time, and expressed by algebraic polynomials in the r- and z-directions. Potential (strain) and kinetic energies of the complete conical shell are formulated. The Ritz method is used to solve the eigenvalue problem, yielding the upper bound values of the frequencies by minimization. As the degree of the polynomials is increased, frequencies converge to the exact values, with four-digit exactitude demonstrated for the first five frequencies. The frequencies from the present 3D method are compared with those from other 3D approaches and 2D shell theory by previous researchers.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455414500011.
  • Informations
    sur cette fiche
  • Reference-ID
    10352739
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine