0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

The Viability and Simplicity of 3D-Printed Construction: A Military Case Study

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Infrastructures, , n. 4, v. 5
Page(s): 35
DOI: 10.3390/infrastructures5040035
Abstrait:

In November 2019, U.S. Marines, Air Force, and Army Corps of Engineers personnel demonstrated the viability and simplicity of three-dimensionally (3D)-printed construction in a controlled environment at the U.S. Army Engineer Research and Development Center—Construction Engineering Research Laboratory in Champaign, Illinois. The tri-service exercise spanned three days and culminated in the construction of three 1 m × 1 m × 1 m (3 ft × 3 ft × 3 ft) concrete dragon’s teeth (square pyramid military fortifications used to defend against tanks and armored vehicles) and several custom-designed objects. The structural components were printed using a custom-built, gantry-style printer called ACES Lite 2 and a commercially available, proprietary mortar mix. This paper examines the viability of using 3D-printed construction in remote, isolated, and expeditionary environments by considering the benefits and challenges associated with the printing materials, structural design, process efficiency, labor demands, logistical considerations, environmental impact, and project cost. Based on the results of this exercise, 3D-printed construction was found to be faster, safer, less labor-intensive, and more structurally efficient than conventional construction methods: the dragon’s teeth were printed in an average of 57 min each and required only two laborers. However, the use of commercially procured, pre-mixed materials introduced additional cost, logistical burden, and adverse environmental impact as compared to traditional, on-site concrete mixing and production. Finally, this paper suggests future applications and areas of further research for 3D-printed construction.

Copyright: © 2020 the Authors. Licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10723207
  • Publié(e) le:
    22.04.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine