0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Vector Form Intrinsic Finite Element Method for Analysis of Train–Bridge Interaction Problems Considering The Coach-Coupler Effect

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 2, v. 19
Page(s): 1950014
DOI: 10.1142/s0219455419500147
Abstrait:

In this paper, the vector form intrinsic finite element (VFIFE) method is presented for analysis the train–bridge systems considering the coach-coupler effect. The bridge is discretized into a group of mass particles linked by massless beam elements and the multi-body coach with suspension systems is simulated as a set of mass particles connected by parallel spring-dashpot units. Then the equation of motion of each mass particle is solved individually and the internal forces induced by pure deformations in the massless beam elements are calculated by a fictitious reverse motion method, in which the structural stiffness matrices need not be updated or factorized. Though the vector-form equations resulting from the VFIFE method cannot be used to compute the structural frequencies by the eigenvalue approach, this study proposes a numerical free vibration test to identify the bridge frequencies for evaluating the bridge damping. Numerical verifications demonstrate that the present VFIFE method performs as accurately as previous numerical ones. The results show that the couplers play an energy-dissipating role in reducing the car bodies’ response due to the bridge-induced resonance, but not in their response due to the train-induced resonance because of the bridge’s intense vibration. Meanwhile, a dual-resonance phenomenon in the train–bridge system occurs when the coach-coupler effect is considered in the vehicle model.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455419500147.
  • Informations
    sur cette fiche
  • Reference-ID
    10352099
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine