0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Utilization of Copper–Molybdenum Tailings to Enhance the Compressive Strength of Alkali-Activated Slag-Fly Ash System

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 4, v. 14
Page(s): 1031
DOI: 10.3390/buildings14041031
Abstrait:

Utilizing a variety of solid wastes to prepare alkali-activated cementitious materials is one of the principal trends in the development of cementitious materials. Commonly used alkali activation precursors such as granulated blast furnace slag (GBFS) and fly ash (FA) will be less available due to resource pressures. Supply limitation is an important reason to research alternative precursors. To realize the high value-added utilization of copper–molybdenum tailings (CMTs), this study adopted the modified sodium silicate solution as an alkaline activator to activate GBFS-FA-CMTs cementitious system to prepare alkali-activated cementitious materials. The influence of CMTs content on the compressive strength of GBFS-FA-CMTs cementitious system was analyzed, and the mechanism of GBFS-FA-CMTs cementitious system was also analyzed through hydration product types, physical phase composition, and microscopic morphology. The results indicated that a paste with the incorporation of CMTs, S50F30C20 (50% GBFS, 30% FA, 20% CMTs), achieved the highest compressive strength of 79.14 MPa, which was due to the filling effect of the CMTs and the degree of participation in the reaction. Pastes with different contents of CMTs, while maintaining a constant CBFS content, exhibited similar strength development. Excessive amounts of CMTs could result in reduced compressive strength. Microstructural analysis revealed that the hydration products were structurally altered by the addition of CMTs. In addition to ettringite, quartz, C(-N)-S-H gel, and calcite, gaylussite was also formed; moreover, the mass of chemically bound water increased, and the microstructure of reaction products became denser. An excess of CMTs may restrict the growth of the hydration gel, leading to more microstructural defects. The study suggests that CMTs could enhance the compressive strength of hardened paste within an alkali-activated slag-fly ash system, possibly due to a filling effect and participation in the chemical reaction. This research confirms the feasibility of using CMTs in alkali-activated cementitious materials.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10773539
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    05.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine