Use of Deep Learning to Study Modeling Deterioration of Pavements a Case Study in Iowa
Auteur(s): |
Seyed Amirhossein Hosseini
Ahmad Alhasan Omar Smadi |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, novembre 2020, n. 11, v. 5 |
Page(s): | 95 |
DOI: | 10.3390/infrastructures5110095 |
Abstrait: |
This paper describes the process and outcome of deterioration modeling for three different pavement types (asphalt, concrete, and composite) in the state of Iowa. Pavement condition data is collected by the Iowa Department of Transportation (DOT) and stored in a Pavement-Management Information System (PMIS). In the state of Iowa, the overall pavement condition is quantified using the Pavement Condition Index (PCI), which is a weighted average of indices representing different types of distress, roughness, and deflection. Deterioration models of PCI as a function of time were developed for the different pavement types using two modeling approaches. The first approach is the long/short_term memory (LSTM), a subset of a recurrent neural network. The second approach, used by the Iowa DOT, is developing individual regression models for each section of the different pavement types. A comparison is made between the two approaches to assess the accuracy of each model. The results show that the LSTM model achieved a higher prediction accuracy over time for all different pavement types. |
Copyright: | © 2020 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.82 MB
- Informations
sur cette fiche - Reference-ID
10723147 - Publié(e) le:
22.04.2023 - Modifié(e) le:
10.05.2023