0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Use of Artificial Neural Networks and Response Surface Methodology for Evaluating the Reliability Index of Steel Wind Towers

Auteur(s): ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2022
Page(s): 1-15
DOI: 10.1155/2022/4219524
Abstrait:

The estimation of structural reliability is a process that requires a large number of computational hours when statistical data are not available since it is necessary to perform a large amount of analysis or numerical simulations to estimate parameters related to the reliability. A methodology is proposed for estimating the structural reliability index, as well as the demand and structural capacity factors inherent to the structure, given the fundamental vibration period and the height of the structure, by using artificial neural networks (ANN) and, alternatively, the response surface method (RSM). Both approaches are applied to steel wind turbine towers. For the cases studied, ANN allow evaluating the reliability index and both the demand and structural capacity factors with greater accuracy than when using RSM.

Copyright: © 2022 Indira Inzunza-Aragón et al. et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10687193
  • Publié(e) le:
    13.08.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine