An unsupervised online anomaly detection method for metal additive manufacturing processes via a statistical time-frequency domain algorithm
Auteur(s): |
Alvin Chen
Fotis Kopsaftopoulos Sandipan Mishra (Intelligent Structural Systems Laboratory, Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA) |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Structural Health Monitoring, septembre 2023, n. 3, v. 23 |
Page(s): | 1926-1948 |
DOI: | 10.1177/14759217231193702 |
- Informations
sur cette fiche - Reference-ID
10745641 - Publié(e) le:
28.10.2023 - Modifié(e) le:
25.04.2024