0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Unloading Phenomena Characteristics in Brittle Rock Masses by A Large-Scale Excavation in Dam Foundation

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: The Open Civil Engineering Journal, , n. 1, v. 8
Page(s): 177-182
DOI: 10.2174/1874149501408010177
Abstrait:

Xiaowan Hydropower station's dam located in south west of China is the second highest arch dam in the world (h = 292 m), its foundation is based on brittle rocks of biotite granite gneiss and amphibolites plagioclase gneiss. A large-scale excavation around the foundation of the dam was conducted, near to 90 meters horizontal depth excavation and 130 meters vertical depth excavation, so the foundation dam was marked by a significant deformation and a severe damage near the excavation zone, namely excavation distributed zone (EDZ). This damage was caused by the unloading process. According to the in situ investigation, the characteristics of unloading rock masses were described. With the acoustic wave velocity monitoring method, the unloading rock masses characteristics of time effect and space distribution are summarized. Usually the unloading process causes fractures in rock masses along two perpendicular directions in the plane of the bank slope, one is parallel to the dam base slope, and the other is parallel to the river with steep-dip angle. Near to the excavation surface, the excavation damage are more serious, and from the high elevation area to low elevation area, the damage caused by unloading are becoming stronger and stronger, and the bottom of dam base is most damaged. The unloading deformation has a direct temporal dependence; in general, after the excavation, the unloading deformation increases quickly during the firsts 90 days, and increase by a slow rate from 90 to 180 days and after that the unloading deformation will be small enough to be neglected.

Copyright: © 2015 Changgen Yan et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10175725
  • Publié(e) le:
    02.01.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine