Understanding land take in small and medium-sized cities through scenarios of shrinkage and growth using autoregressive models
Auteur(s): |
Grace Abou Jaoude
Olaf Mumm André Karch Vanessa Miriam Carlow |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Frontiers in Built Environment, février 2022, v. 8 |
DOI: | 10.3389/fbuil.2022.908698 |
Abstrait: |
Rapid transitions induced by migration flows and socio-economic developments brought about massive changes in urbanization processes and resulted in increasingly uncertain futures. The implications and complexities of the ensuing urbanization patterns are difficult to predict and project into the future. While most studies are focused on large cities and major urban centers, urbanization processes in small and medium-sized cities have garnered little scholarly and political attention. To understand future urbanization patterns, we used the TOPOI method, a novel approach for classifying territorial settlements, and spatial autoregressive models to examine contrasting futures of population growth and shrinkage in one small and one medium-sized city in Lower Saxony, Germany. Results revealed that despite planning frameworks, high population density and functional mix, respectively, were insufficient mechanisms to reduce land take. Contrary to current assumptions on the functional mix of small and medium-sized towns, our findings showed that more than half of the settlements across the study area accommodated three or more functions. Since the share of residential buildings and functional mix strongly influenced land take, further research is needed to understand their implications on sustainable urban planning. Shrinking towns in Lower Saxony continue to present multidimensional challenges and emphasize the need for transforming local planning cultures and institutional frameworks to sustainably manage and repurpose these potentially vacant areas. |
Copyright: | © 2022 Grace Abou Jaoude, Olaf Mumm, André Karch, Vanessa Miriam Carlow |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.25 MB
- Informations
sur cette fiche - Reference-ID
10702940 - Publié(e) le:
11.12.2022 - Modifié(e) le:
15.02.2023