0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Transitions From Regular To Chaotic Vibrations of Spherical and Conical Axially-symmetric Shells

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 3, v. 5
Page(s): 359-385
DOI: 10.1142/s0219455405001623
Abstrait:

By the variational principle, the chaotic vibrations of deterministic geometrically nonlinear elastic spherical and conical axially symmetric shells with non-homogeneous thickness subjected to a transversal harmonic load are analyzed. The material of the shells is assumed to be isotropic and of the Hookean type. Inertial forces tangent to the averaged surface and inertia of rotation of the cross-section are neglected. By the Ritz procedure, the original PDEs are transferred to the ODEs (Cauchy problem), which are then solved by the fourth-order Runge–Kutta method. In the numerical studies, scenarios of transitions from harmonic to chaotic states for vibrations of flexible spherical and conical shells are detected. Various vibrational states for different combinations of the following control parameters: shell's deflection arrow, the amplitude and frequency of the exciting force, number of modes considered, boundary conditions, and the thickness and shape of the shell cross-section are studied. By adjusting the above parameters, we can detect the transition of a continuous system to the lumped one, and the transition from the harmonic to chaotic vibrations.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455405001623.
  • Informations
    sur cette fiche
  • Reference-ID
    10353219
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine