Thermal Modeling of a Historical Building Wall: Using Long-Term Monitoring Data to Understand the Reliability and the Robustness of Numerical Simulations
Auteur(s): |
Simone Panico
Marco Larcher Alexandra Troi Cristina Baglivo Paolo Maria Congedo |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 31 juillet 2022, n. 8, v. 12 |
Page(s): | 1258 |
DOI: | 10.3390/buildings12081258 |
Abstrait: |
Thermal modeling of building components plays a crucial role in designing energy efficiency measures, assessing living comfort, and preventing building damages. The accuracy of the modeling process strongly depends on the reliability of the physical models and the correct selection of input parameters, especially for historic buildings where uncertainties on wall composition and material properties are higher. This work evaluates the reliability of building thermal modeling and identifies the input parameters that most affect the simulation results. A monitoring system is applied to a historic building wall to measure the temperature profile. The long-term dataset is compared with the result of a simulation model. A sensitivity analysis is applied for the determination of the influential input parameters. A two-step optimization is performed to calibrate the numerical model: the first optimization step is based on an optimized selection of the database materials, while the second optimization step uses a particle swarm algorithm. The results indicate that the output of the simulation model is largely influenced by the coefficients describing the coupling with the boundary conditions and by the thermal conductivities of the materials. Very good results are obtained already after the first optimization step (RMSE=0.75 °C) while the second optimization step improves further the agreement (RMSE=0.48 °C). The parameter values reported in the datasheets do not match those found through optimization. Even with extensive optimization using an algorithm, starting with monitoring data is insufficient to identify material parameter values. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
6.03 MB
- Informations
sur cette fiche - Reference-ID
10692718 - Publié(e) le:
23.09.2022 - Modifié(e) le:
10.11.2022