• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Thermal Analyses and Responses of Bridge Deck Hydronic Snow Melting System

  1. Xu Huining (2018), "Investigation of design alternatives for hydronic snow melting pavement systems in China" in Journal of Cleaner Production, v. 170, Elsevier BV, p. 1413-1422

    https://doi.org/10.1016/j.jclepro.2017.09.262

  2. Liu Xiaobing (2007), "Modeling snow melting on heated pavement surfaces. Part I: Model development" in Applied Thermal Engineering, v. 27, n. 5-6, Elsevier BV, p. 1115-1124

    https://doi.org/10.1016/j.applthermaleng.2006.06.017

  3. Wang Hao (2016), "Life-cycle assessment of airport pavement design alternatives for energy and environmental impacts" in Journal of Cleaner Production, v. 133, Elsevier BV, p. 163-171

    https://doi.org/10.1016/j.jclepro.2016.05.090

  4. Carmona J. (2015), "Efficiency of a conductive cement-based anodic system for the application of cathodic protection, cathodic prevention and electrochemical chloride extraction to control corrosion in reinforced concrete structures" in Corrosion Science, v. 96, Elsevier BV, p. 102-111

    https://doi.org/10.1016/j.corsci.2015.04.012

  5. Fay Laura (2012), "Environmental Impacts of Chemicals for Snow and Ice Control: State of the Knowledge" in Water, Air, & Soil Pollution, v. 223, n. 5, Springer Science and Business Media LLC, p. 2751-2770

    https://doi.org/10.1007/s11270-011-1064-6

  6. Balbay Asım (2013), "Temperature distributions in pavement and bridge slabs heated by using vertical ground-source heat pump systems - doi: 10.4025/actascitechnol.v35i4.15712" in Acta Scientiarum. Technology, v. 35, n. 4, Universidade Estadual de Maringa

    https://doi.org/10.4025/actascitechnol.v35i4.15712

  7. in Scientific Research and Essays, v. 5 (2010), p. 3955
  8. Wang Huajun (2010), "Experimental investigation of hydronic snow melting process on the inclined pavement" in Cold Regions Science and Technology, v. 63, n. 1-2, Elsevier BV, p. 44-49

    https://doi.org/10.1016/j.coldregions.2010.04.007

  9. Lai Yong (2014), "Automatically melting snow on airport cement concrete pavement with carbon fiber grille" in Cold Regions Science and Technology, v. 103, Elsevier BV, p. 57-62

    https://doi.org/10.1016/j.coldregions.2014.03.008

  10. Liu Kai (2017), "Prediction models of the thermal field on ice-snow melting pavement with electric heating pipes" in Applied Thermal Engineering, v. 120, Elsevier BV, p. 269-276

    https://doi.org/10.1016/j.applthermaleng.2017.04.008

  11. Chen Jiaqi (2015), "Evaluation of thermal conductivity of asphalt concrete with heterogeneous microstructure" in Applied Thermal Engineering, v. 84, Elsevier BV, p. 368-374

    https://doi.org/10.1016/j.applthermaleng.2015.03.070

  12. Gomis, J. / Galao, Ó. / Gomis, V. / Zornoza, E. / Garcés, P. (2015): Self-heating and deicing conductive cement. Experimental study and modeling. Dans: Construction and Building Materials, v. 75 (janvier 2015).

    https://doi.org/10.1016/j.conbuildmat.2014.11.042

  13. Wang Huajun (2009), "Study of critical free-area ratio during the snow-melting process on pavement using low-temperature heating fluids" in Energy Conversion and Management, v. 50, n. 1, Elsevier BV, p. 157-165

    https://doi.org/10.1016/j.enconman.2008.08.019

  14. Pan Pan (2015), "A review on hydronic asphalt pavement for energy harvesting and snow melting" in Renewable and Sustainable Energy Reviews, v. 48, Elsevier BV, p. 624-634

    https://doi.org/10.1016/j.rser.2015.04.029

  15. Liu Xiaobing (2007), "Modeling snow melting on heated pavement surfaces. Part II: Experimental validation" in Applied Thermal Engineering, v. 27, n. 5-6, Elsevier BV, p. 1125-1131

    https://doi.org/10.1016/j.applthermaleng.2006.07.029

  16. in ASHRAE Transactions, v. 108 (2002), p. 406
  17. Chiasson Andrew D. (2000), "A Model for Simulating the Performance of a Pavement Heating System as a Supplemental Heat Rejecter With Closed-Loop Ground-Source Heat Pump Systems" in Journal of Solar Energy Engineering, v. 122, n. 4, ASME International, p. 183-191

    https://doi.org/10.1115/1.1330725

  18. "Development and Experimental Validation of Simulation of Hydronic Snow Melting Systems for Bridges"
  19. Johnsson Josef (2019), "Modeling the thermal performance of low temperature hydronic heated pavements" in Cold Regions Science and Technology, v. 161, Elsevier BV, p. 81-90

    https://doi.org/10.1016/j.coldregions.2019.03.007

  20. Li Kongqing (2018), "Dynamic heat load calculation of a bridge anti-icing system" in Applied Thermal Engineering, v. 128, Elsevier BV, p. 198-203

    https://doi.org/10.1016/j.applthermaleng.2017.09.024

  21. Yi-Qiu Tan (2018), "Responses of snow-melting airfield rigid pavement under aircraft loads and temperature loads and their coupling effects" in Transportation Geotechnics, v. 14, Elsevier BV, p. 107-116

    https://doi.org/10.1016/j.trgeo.2017.11.006

  22. in Engineering Journal Wuhan University, v. 43 (2010), p. 703
  23. Dittus F.W. (1985), "Heat transfer in automobile radiators of the tubular type" in International Communications in Heat and Mass Transfer, v. 12, n. 1, Elsevier BV, p. 3-22

    https://doi.org/10.1016/0735-1933(85)90003-x

  24. in Journal of Tongji University, v. 3 (1984), p. 76
  25. in Journal Building Materials, v. 2 (2004), p. 232
  26. in Journal of Inner Mongolia University Technology, v. 36 (2014), p. 113
  27. Liu Hongwei (2019), "Sensitivity analysis and optimum design of a hydronic snow melting system during snowfall" in Physics and Chemistry of the Earth, Parts A/B/C, Elsevier BV

    https://doi.org/10.1016/j.pce.2019.01.009

  28. Mallick Rajib B. (2012), "Harvesting heat energy from asphalt pavements: development of and comparison between numerical models and experiment" in International Journal of Sustainable Engineering, v. 5, n. 2, Informa UK Limited, p. 159-169

    https://doi.org/10.1080/19397038.2011.574742

  29. in Journal of South China University Technology, v. 42 (2014), p. 90
  30. Chi Zhang (2019), "Long-term thermal analysis of an airfield-runway snow-melting system utilizing heat-pipe technology" in Energy Conversion and Management, v. 186, Elsevier BV, p. 473-486

    https://doi.org/10.1016/j.enconman.2019.03.008

  31. in Journal of Inner Mongolia University Technology, v. 33 (2017), p. 227
  32. "Study on cement concrete pavement of snow melting and deicing"
  33. in Journal of Chang’an University (Natural Science Edition), v. 34 (2014), p. 70

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10379732
  • Publié(e) le:
    14.11.2019
  • Modifié(e) le:
    14.11.2019