0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Theoretical Model and Shaking Table Experiment of Eddy Current–Enhanced Friction Pendulum Tuned Mass Damper

Auteur(s): ORCID






Médium: article de revue
Langue(s): anglais
Publié dans: The Structural Design of Tall and Special Buildings, , n. 2, v. 34
DOI: 10.1002/tal.2211
Abstrait:

Traditional pendulum tuned mass dampers (PTMDs) necessitate substantial vertical space, and conventional friction pendulum systems (FPS‐TMDs) struggle to balance low activation thresholds with adequate damping levels due to their reliance on friction forces. This study presents an innovative eddy current–enhanced friction pendulum tuned mass damper (ECEFP‐TMD), which capitalizes on eddy current damping to lower the activation threshold effectively. Simultaneously, incidental friction damping provides a complementary dual–damping scheme. We developed a robust theoretical model, underpinned by shaking table experiments, to demonstrate the ECEFP‐TMD's superior vibration mitigation. Findings reveal that eddy current damping not only diminishes the activation threshold but also streamlines the adjustment of damping levels. The integrated dual–damping mechanism substantially augments energy dissipation, thus reducing the acceleration response of structures subjected to seismic activity. Particularly, for FPS‐TMDs with minimal friction coefficients, the inclusion of eddy current damping substantially elevates seismic resilience, mitigating stick–slip behavior typically induced by excessive friction damping.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1002/tal.2211.
  • Informations
    sur cette fiche
  • Reference-ID
    10815067
  • Publié(e) le:
    03.02.2025
  • Modifié(e) le:
    03.02.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine