0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Synthetic‐to‐realistic domain adaptation for cold‐start of rail inspection systems

Auteur(s): (Key Laboratory of Big Data & Artificial Intelligence in Transportation (Beijing Jiaotong University) Ministry of Education Beijing China)
(Key Laboratory of Big Data & Artificial Intelligence in Transportation (Beijing Jiaotong University) Ministry of Education Beijing China)
(Key Laboratory of Big Data & Artificial Intelligence in Transportation (Beijing Jiaotong University) Ministry of Education Beijing China)
(Key Laboratory of Big Data & Artificial Intelligence in Transportation (Beijing Jiaotong University) Ministry of Education Beijing China)
(Infrastructure Inspection Research Institute, China Academy of Railway China Academy of Railway Sciences LTD Beijing China)
(Infrastructure Inspection Research Institute, China Academy of Railway China Academy of Railway Sciences LTD Beijing China)
(Infrastructure Inspection Research Institute, China Academy of Railway China Academy of Railway Sciences LTD Beijing China)
(Key Laboratory of Big Data & Artificial Intelligence in Transportation (Beijing Jiaotong University) Ministry of Education Beijing China)
(Key Laboratory of Big Data & Artificial Intelligence in Transportation (Beijing Jiaotong University) Ministry of Education Beijing China)
Médium: article de revue
Langue(s): anglais
Publié dans: Computer-Aided Civil and Infrastructure Engineering, , n. 3, v. 39
Page(s): 424-437
DOI: 10.1111/mice.13087
Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1111/mice.13087.
  • Informations
    sur cette fiche
  • Reference-ID
    10735018
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    10.02.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine