• DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Synergistic effect of RHA and FCW in alkali-aggregate reaction mitigation

  1. Abbas, Safeer / Kazmi, Syed M. S. / Munir, Muhammad J. (2017): Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates. Dans: Construction and Building Materials, v. 132 (février 2017).

    https://doi.org/10.1016/j.conbuildmat.2016.11.126

  2. Dos Santos Adorno, Cleberson / de Medeiros, Marcelo H. F. / Filho, Juarez Hoppe / Réus, Giovana Costa (2017): Effects of the addition of red ceramic, limestone filler and rice husk ash in alkali silica reaction. Dans: Journal of Building Pathology and Rehabilitation, v. 3, n. 1 (décembre 2017).

    https://doi.org/10.1007/s41024-017-0030-0

  3. Afshinnia, Kaveh / Poursaee, Amir (2015): The potential of ground clay brick to mitigate Alkali–Silica Reaction in mortar prepared with highly reactive aggregate. Dans: Construction and Building Materials, v. 95 (octobre 2015).

    https://doi.org/10.1016/j.conbuildmat.2015.07.155

  4. Afshinnia, Kaveh / Rangaraju, Prasada Rao (2015): Efficiency of ternary blends containing fine glass powder in mitigating alkali–silica reaction. Dans: Construction and Building Materials, v. 100 (décembre 2015).

    https://doi.org/10.1016/j.conbuildmat.2015.09.043

  5. AMORIM L. V. (2000), "Reciclagem de Rejeitos de Cerâmica Vermelha e da Construção Civil para Obtenção de Aglomerantes Alternativos" in Cerâmica Industrial, v. 5 (2000), p. 35
  6. CHAPPEX T. (2012), "Alkali Fixation of C-S-H in Blended Cement Pastes and Its Relation to Alkali Silica Reaction" in Cement and Concrete Research, v. 42 (2012), p. 1049

    https://doi.org/10.1016/j.cemconres.2012.03.010

  7. CHAPPEX T. (2012), "The Influence of Aluminium on the Dissolution of Amorphous Silica and Its Relation to Alkali Silica Reaction" in Cement and Concrete Research, v. 42 (2012), p. 1645

    https://doi.org/10.1016/j.cemconres.2012.09.009

  8. CHAPPEX T. (2013), "The Effect of Aluminum in Solution on the Dissolution of Amorphous Silica and its Relation to Cementitious Systems" in Journal of the American Ceramic Society, v. 96 (2013), p. 592
  9. CORDEIRO G. C. (2010), "Potencial de Argila Caulinítica de Campos dos Goytacazes, RJ, na Produção de Pozolana Para Concreto de Alta Resistência" in Cerâmica, v. 56 (2010), p. 71

    https://doi.org/10.1590/S0366-69132010000100012

  10. CYR M. (2009), "Reduction of ASR-Expansion Using Powders Ground From Various Sources of Reactive Aggregates" in Cement and Concrete Composities, v. 31 (2009), p. 438

    https://doi.org/10.1016/j.cemconcomp.2009.04.013

  11. DAL MOLIN D. C. (2007), "Técnicas Experimentais Para o Estudo da Microestrutura"
  12. DEMIR I. (2011), "Performance of Cement Mortars Replaced by Ground Waste brick in Different Aggressive Conditions" in Ceramics - Silikáty, v. 55 (2011), p. 268
  13. DIAMOND S. (2004), "Reaction Products of Densified Silica Fume Agglomerates in Concrete" in Cement and Concrete Research, v. 34 (2004), p. 1625

    https://doi.org/10.1016/j.cemconres.2004.01.031

  14. GLASSER F. P. (1992), "Chemistry of the Alkali-Aggregate Reaction"
  15. Gonçalves, J. P. / Tavares, L. M. / Toledo Filho, R. D. / Fairbairn, E. M. R. (2009): Performance evaluation of cement mortars modified with metakaolin or ground brick. Dans: Construction and Building Materials, v. 23, n. 5 (mai 2009).

    https://doi.org/10.1016/j.conbuildmat.2008.08.027

  16. HAMAB M. A. (1981), "Effect of the Combustion Process on the Structure of Rice Hull Sílica" in Thermochimica Acta, v. 48 (1981), p. 343

    https://doi.org/10.1016/0040-6031(81)80255-9

  17. Jamil, M. / Kaish, A. B. M. A. / Raman, S. N. / Zain, M. F. M. (2013): Pozzolanic contribution of rice husk ash in cementitious system. Dans: Construction and Building Materials, v. 47 (octobre 2013).

    https://doi.org/10.1016/j.conbuildmat.2013.05.088

  18. KAZMIERCZAK C. de S. (2010), "Produtos de Cerâmica Vermelha"
  19. Keppert, Martin / Urbanová, Martina / Brus, Jiri / Čáchová, Monika / Fořt, Jan (2017): Rational design of cement composites containing pozzolanic additions. Dans: Construction and Building Materials, v. 148 (septembre 2017).

    https://doi.org/10.1016/j.conbuildmat.2017.05.032

  20. Le, Ha Thanh / Siewert, Karsten / Ludwig, Horst-Michael (2015): Alkali silica reaction in mortar formulated from self-compacting high performance concrete containing rice husk ash. Dans: Construction and Building Materials, v. 88 (juillet 2015).

    https://doi.org/10.1016/j.conbuildmat.2015.04.005

  21. MADANDOUST R. (2011), "Mechanical Properties and Durability Assessment of Rice Husk Ash Concrete" in Biosystems Engineering, v. 110 (2011), p. 144

    https://doi.org/10.1016/j.biosystemseng.2011.07.009

  22. MASS A. J. (2007), "Alkali Silica Reactivity of Agglomerated Silica Fume" in Cement and Concrete Research, v. 37 (2007), p. 166

    https://doi.org/10.1016/j.cemconres.2006.10.011

  23. Pereira-de-Oliveira, Luiz A. / Castro-Gomes, João P. / Santos, Pedro M. S. (2012): The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Dans: Construction and Building Materials, v. 31 (juin 2012).

    https://doi.org/10.1016/j.conbuildmat.2011.12.110

  24. PRISZKULNIK S. (2005), "Inspeção e Diagnóstico de Estruturas de Concreto com Problemas de Reação Álcali-Agregado", p. 1017
  25. RAJABIPOUR F. (2015), "Alkali-Silica Reaction: current understanding of the reaction mechanisms and the knowledge gaps" in Cement and Concrete Research, v. 76 (2015), p. 130

    https://doi.org/10.1016/j.cemconres.2015.05.024

  26. ROJAS M. I. S. (2014), "Durability of Blended Cement Pastes Containing Ceramic Waste as a Pozzolanic Addition" in Journal of the American Ceramic Society, v. 97 (2014), p. 1543

    https://doi.org/10.1111/jace.12882

  27. Sharma, Devesh K. / Sharma, Rekha (2018): Influence of rice husk ash and rice tiller ash along with chromate reducing agents on strength and hydration properties of Ordinary Portland Cement. Dans: Construction and Building Materials, v. 169 (avril 2018).

    https://doi.org/10.1016/j.conbuildmat.2018.03.044

  28. SOUZA G. P. (2005), "Mineralogical Analysis of Brazilian Ceramic Sedimentary Clays Used in Red Ceramic" in Cerâmica, v. 51 (2005), p. 382

    https://doi.org/10.1590/S0366-69132005000400012

  29. TURANLI L. (2003), "Use of Ground Clay Brick as a Pozzolanic Material to Reduce the Alkali-Silica Reaction" in Cement and Concrete Research, v. 23 (2003), p. 1539

    https://doi.org/10.1016/S0008-8846(03)00101-7

  30. Zain, M. F. M. / Islam, M. N. / Mahmud, F. / Jamil, M. (2011): Production of rice husk ash for use in concrete as a supplementary cementitious material. Dans: Construction and Building Materials, v. 25, n. 2 (février 2011).

    https://doi.org/10.1016/j.conbuildmat.2010.07.003

Publicité

  • Informations
    sur cette fiche
  • Reference-ID
    10412558
  • Publié(e) le:
    12.02.2020
  • Modifié(e) le:
    12.02.2020