0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Study on the Sloshing Problem of Vertical Storage Tanks under the Action of Near-Fault Earthquakes

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-10
DOI: 10.1155/2020/1097696
Abstrait:

In this study, through a vibration table test, finite element simulation, and research on the rationality of the wave-height fortification of national storage tank specifications, the sloshing response of vertical storage tanks under the action of near-fault ground motion was analyzed. The test results showed that the sloshing wave height of a vertical storage tank was larger under near-fault or long-period ground motions, and the relationship between the sloshing wave height and the peak acceleration of input ground motions was approximately linear. The numerical simulations of the model tank showed that the simulation wave height and the test wave-height data were well fitted. Therefore, it was feasible to simulate the sloshing of large vertical storage tanks using ADINA software. In addition, a large number of sloshing simulations of near-fault ground motions on 10,000 m³ vertical storage tanks were performed. The simulated wave height had a high correlation with the predominant period or pulse period of near-fault ground motions. Under the calculation with similar parameters, the wave height of the tank standard in several countries had a lower fortification of the near-fault excitation wave height. Through the root mean-square method using a small sample size, a wave-height correction under a near-fault effect was applied to the wave-height formula for the Chinese tank seismic specification. Finally, the problem of a double-damping correction was addressed by adjusting China’s GB50341 wave-height formula. This work provides a reference value for practical engineering applications.

Copyright: © 2020 Lijian Zhou et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10410020
  • Publié(e) le:
    26.01.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine