0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Study on the Influence of Sand Core Compactness on Surface Entropy considering Engineering Disturbance

Auteur(s):



ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-10
DOI: 10.1155/2021/9986873
Abstrait:

In order to explore the correlation between the compactness of sand core samples and its surface image features and to provide the basis for rapid identification and recognition of core samples in engineering investigation, a typical image data set of sand core samples disturbed by drilling construction in practical engineering has been established, using Python language to compile algorithm to calculate one-dimensional entropy and two-dimensional entropy of 60 groups of sand core samples with different densities. The influence of different sand core compactness on surface entropy characteristics was discussed, and the following conclusions were obtained: (1) Affected by drilling construction and disturbance, the looser the sand core surface particles are, the worse the sorting is and the more irregular the shape characteristics are. There is a close relationship between grain texture and compactness. (2) The calculation results of sand image entropy of one-dimensional entropy and two-dimensional entropy showed that the entropy value of loose, slightly dense, and medium dense sand images is positively correlated with the compactness of sand. (3) The maximum variance of two-dimensional entropy of loose, slightly dense, and medium dense sand image in the same borehole is less than 0.09, and the data variance amplification effect of two-dimensional entropy of image is mainly between different boreholes. (4) The dense feature of core sample structure forms an ordered structure with a gray change boundary, which increases the roughness of the image and leads to the increase of entropy. The two-dimensional entropy reveals the internal correlation mechanism of the influence of the engineering state on the surface structure of sand more clearly than the one-dimensional entropy and more effectively characterizes the dense degree of sand particles. (5) Using two-dimensional entropy to judge the compactness of sand image in the same borehole, the data fluctuation is small, and the algorithm is stable and reliable. The research results have reference values for the detection and analysis of sand sample density in geotechnical engineering investigation.

Copyright: © 2021 Ding-li Su et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10625307
  • Publié(e) le:
    26.08.2021
  • Modifié(e) le:
    17.02.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine