Study on the Decoupled Charge Effect in Deep-Hole Cumulative Blasting of Coal Seam
Auteur(s): |
Yanqi Song
Xiangshang Li Deyong Guo Bokang Shi |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, 2019, v. 2019 |
Page(s): | 1-9 |
DOI: | 10.1155/2019/8486198 |
Abstrait: |
Five models of cumulative blasting are established by using ANSYS/LS-DYNA to study the effect of decoupling coefficient on cumulative blasting to improve coal seam permeability. The formation and migration process of the shaped energy jets with two kinds of decoupling coefficient are compared and analyzed; also, the propagation of explosive stress waves is represented. The result showed that the air in the blast hole is the key to the formation and migration of the condensing jet. The air in the hole also could reduce the attenuation of stress wave in a certain range. However, if the decoupling coefficient is too large, the air in the hole will consume excessive explosive energy, which is also not conducive to energy transfer. Therefore, there is an optimum decoupling coefficient which can minimize the coal crushing area, increase the coal fissure area, and improve the gas extraction rate. Besides, the cumulative blasting tests were carried out in a coal seam. The test results show that decoupling charge could effectively improve coal seam permeability, and the blasting effect was better when the decoupling coefficient is between 1.67 and 2. |
Copyright: | © 2019 Yanqi Song et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.44 MB
- Informations
sur cette fiche - Reference-ID
10311734 - Publié(e) le:
17.04.2019 - Modifié(e) le:
02.06.2021