Study on the Application and Deformation Characteristics of Construction Waste Recycled Materials in Highway Subgrade Engineering
Auteur(s): |
Yuan Mei
Hongping Lu Xueyan Wang Bingyu Zhou Ziyang Liu Lu Wang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 20 février 2025, n. 5, v. 15 |
Page(s): | 835 |
DOI: | 10.3390/buildings15050835 |
Abstrait: |
It is difficult to meet environmental requirements via the coarse treatment methods of landfilling and open-air storage of construction waste. At the same time, the consumption of building materials in highway engineering is enormous. Using construction waste as a filling material for proposed roads has become a research hotspot in recent years. This paper starts with basic performance tests of recycled construction waste materials, and then moves on to laboratory experiments conducted to obtain the road performance of the recycled materials, the testing of key indicators of post-construction filling quality of the roadbed, and analyses of the deformation pattern of roadbed filled with construction waste. Additionally, the ABAQUS finite element software was used to establish a numerical model for roadbed deformation and analyze the roadbed deformation under different compaction levels and vehicle load conditions. The experimental results show that the recycled material has a moisture content of 8.5%, water absorption of 11.73%, and an apparent density of 2.61 g/cm3, while the liquid limit of fine aggregates is 20% and the plasticity index is 5.4. Although the physical properties are slightly inferior to natural aggregates, its bearing ratio (25–55%) and low expansion characteristics meet the requirements for high-grade highway roadbed filling materials. The roadbed layer with a loose compaction of 250 mm, after eight passes of rolling, showed a settlement difference of less than 5 mm, with the loose compaction coefficient stabilizing between 1.15 and 1.20. Finite element simulations indicated that the total settlement of the roadbed stabilizes at 20–30 mm, and increasing the compaction level to 96% can reduce the settlement by 2–4%. Vehicle overload causes a positive correlation between the vertical displacement and shear stress in the base layer, suggesting the need to strengthen vehicle load control. The findings provide theoretical and technical support for the large-scale application of recycled construction waste materials in roadbed engineering. |
Copyright: | © 2025 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
9.6 MB
- Informations
sur cette fiche - Reference-ID
10820583 - Publié(e) le:
11.03.2025 - Modifié(e) le:
11.03.2025