0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Study on Temporal and Spatial Characteristics of Overlying Strata in the Deep Coal Mining Process

Auteur(s): ORCID
ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/4914531
Abstrait:

This study adopts the stress relief method to test the in situ stress in the field to obtain the in situ stress distribution characteristics of no. 2 + 3# coal seam. A three-dimensional model was established with the no. S3012 working face as the engineering background, and the measured in situ stress values were applied to the three-dimensional model, and the spatial-temporal evolution characteristics of coal and rock mass around the stope during coal seam mining were studied. The specific conclusions are as follows: the three-dimensional stress distribution map in front of, behind, and on both sides of the working face in the process of coal mining are obtained. As the working face goes on, the maximum value of the supporting stress formed in front of, behind, and on both sides of the working face shifts to the corner, presenting a “hump-like” distribution. The stress concentration coefficient of front, back, and both sides of stope increases linearly with the increase of the mining size. Under the same mining size, the stress concentration coefficient in front of stope is the smallest, and the stress concentration coefficient on both sides is the largest. The three-dimensional displacement field distribution nephogram of overlying strata in the process of coal mining is obtained. With the continuous advance of the working face, the roof strata of coal seam undergo the continuous dynamic subsidence process, and the roof subsidence increases continuously, showing the shape of “bowl” with sharp bottom. In the process of working face mining, the roof displacement of coal seam showed an “O” shape evolution characteristic. The three-dimensional distribution cloud map of the plastic zone of coal and rock mass in the process of the working face mining was obtained, and the failure volume of the plastic zone gradually increases with the continuous progress of the working face.

Copyright: © Bang’an Zhang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10638236
  • Publié(e) le:
    30.11.2021
  • Modifié(e) le:
    17.02.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine