0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Study on Personnel Detection Based on Retinex and YOLOv4 in Building Fire

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Physics: Conference Series, , n. 1, v. 2185
Page(s): 012039
DOI: 10.1088/1742-6596/2185/1/012039
Abstrait:

When a fire occurs in a building, the internal environment is full of dense smoke, which will greatly hinder the evacuation and rescue of the trapped persons. If the evacuation and rescue are not in time, the life safety of the trapped persons will be seriously threatened. In response to this problem, this paper proposes a method for quickly detecting trapped persons in building fires. This method uses a combination of multi-scale Retinex image sharpening algorithm and YOLOv4 person detection algorithm. First obtain the image information of the fire scene, use the multi-scale Retinex algorithm based on the Gaussian pyramid to perform the sharpening process, and then use the YOLOv4 model to perform the personnel detection on the sharpened fire scene image. The experimental results show that the confidence of image person detection after Retinex sharpening processing has been significantly improved.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1088/1742-6596/2185/1/012039.
  • Informations
    sur cette fiche
  • Reference-ID
    10670874
  • Publié(e) le:
    29.05.2022
  • Modifié(e) le:
    29.05.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine