Study on Further Improvement of Anti-tsunami Ability of a New Type Bridge Pier
Auteur(s): |
Wanli Yang
Hailin Hou Quanlong Zhu Junling Liu Fuhai Li Lingyuan Zhou |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Journal of Earthquake and Tsunami, 30 juin 2022, n. 4, v. 16 |
DOI: | 10.1142/s1793431122500063 |
Abstrait: |
Compared with circular, square and diamond piers, the N60 pier proposed in our previous study has been numerically proven to be effective in reducing tsunami force. The relatively stronger vortices behind the N60 pier are responsible for the not-small-enough tsunami force on the N60 pier. The asymmetry in shape makes the N60 pier fail to reduce flood force because flood propagates in the opposite direction of tsunami bore. A series of new type piers named [Formula: see text] are proposed to further improve the anti-tsunami ability of the N60 by computational fluid dynamics (CFD) method among which the N60-60 pier is proven to be most effective in reducing tsunami force, and its tsunami force mitigation mechanism is analyzed numerically. Further, the physical experiments were conducted to validate the N60 pier and the new type pier N60-60. Results show that compared with circular, square and diamond piers, the N60 pier is indeed capable of reducing tsunami force, and compared with the N60 pier, the new type N60-60 pier is capable of further reducing tsunami force. The order of magnitudes of tsunami forces on piers is: N60-60 [Formula: see text] N60 [Formula: see text] circular [Formula: see text] diamond [Formula: see text] square. |
- Informations
sur cette fiche - Reference-ID
10777068 - Publié(e) le:
12.05.2024 - Modifié(e) le:
12.05.2024