0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Study on Deterioration Characteristics of Uniaxial Compression Performance and Microstructure Changes of Red-Bed Mudstone during Gaseous Water Sorption

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 9, v. 12
Page(s): 1399
DOI: 10.3390/buildings12091399
Abstrait:

Previously conducted studies have established that gaseous water sorption of mudstone is widespread in nature. The deterioration of its uniaxial compression properties during gaseous water sorption can cause engineering problems. However, related studies were currently in the initial stage of this research direction. On the one hand, there were few studies on the deterioration characteristics of the uniaxial compression properties of mudstone in this process. The results might not be applicable to all projects. On the other hand, its microstructure changes in this process were unclear. Therefore, to obtain the deterioration characteristics of uniaxial compressive performance during gaseous water sorption for offering scientific reference to the geotechnical engineering of mudstone in the central Sichuan region of China, red-bed mudstone was used as a research material. A swelling test and uniaxial compression tests were carried out. To clarify microstructure changes for advancing the depth of research on the effects of gaseous water on mudstone, scanning electron microscopy (SEM) tests were performed. As a result of this study, formulas were first established that could correctly characterize the deterioration of uniaxial compressive strength (UCS) and elastic modulus when the moisture absorption rate increased. Secondly, the dependence was obtained, which was the relationship between both the UCS and elastic modulus and moisture absorption time. Finally, microstructure changes were revealed during gaseous water sorption.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10692738
  • Publié(e) le:
    23.09.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine