0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Study on Conventional and Rheological Properties of Corn Stalk Bioasphalt/PPA Composite Modified Asphalt

Auteur(s):
ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-14
DOI: 10.1155/2021/7928189
Abstrait:

As a new type of pavement material, bioasphalt has received more and more attention. However, the high-temperature behavior of bioasphalt is poor after blending with asphalt binder. In order to solve this problem and facilitate the waste utilization and resource conservation, the corn stalk bioasphalt/PPA composite modified asphalt was proposed. The conventional performance tests and rheological tests were conducted to evaluate high-temperature and low-temperature behavior. Fourier transform infrared reflection (FTIR) test was undertaken to analyze the mechanism of modified asphalt. The results indicated that blended asphalt penetration and ductility gradually decrease with the PPA content increasing. The softening point and viscosity of the modified asphalt increased, which led to an improvement of blended asphalt’s rigidity. The PPA increased the rutting index of corn stalk bioasphalt/PPA composite modified asphalt. However, bioasphalt had a negative effect on its high-temperature performance. The corn stalk bioasphalt/PPA composite modified asphalt could meet the specification requirement at −18°C considering the creep rate and stiffness modulus, indicating it had outstanding crack resistance. When the PPA and bioasphalt respect to the weight of neat asphalt were 6%–8% and 10%–16%, respectively, the corn stalk bioasphalt/PPA composite modified asphalt performance was optimal. However, shear time and shear rate merely affected the proposed modified asphalt performance. The bioasphalt did not affect the chemical structure of asphalt. However, PPA generated new functional groups (P-O single bond, phosphate (RO)3P = O, and P=O double bond) causing a chemical modification in the asphalt binder. This study can provide a basis for applying bioasphalt, making road engineering more economical and environmentally friendly.

Copyright: © Fuhai Wang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10638216
  • Publié(e) le:
    30.11.2021
  • Modifié(e) le:
    17.02.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine