0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Study on Concrete Deterioration and Chloride Ion Diffusion Mechanism by Different Aqueous NaCl-MgSO4 Concentrations

Auteur(s): ORCID





Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 11, v. 12
Page(s): 1843
DOI: 10.3390/buildings12111843
Abstrait:

Chemical erosion of reinforced concrete by Cl−, SO42− and Mg2+ in saline soil is the main factor of steel corrosion and concrete damage. In this study, the effects of different molar ratios of aqueous NaCl-MgSO4 on concrete macroscopic properties (appearance, weight change, compressive strength, and dynamic elastic modulus), ion content, microstructure, and porosity of concrete were investigated. The effects of different molar ratios on the macroscopic characteristics and erosion depth of concrete were revealed through concrete appearance, weight, mechanical properties, and SO42− and Cl− content. Analysis of the microstructural evolution process and complex mineral composition of concrete using various microscopic testing methods. The results showed that with increased salt concentration and erosion time, the weight change rate, compressive strength change rate, and relative dynamic elastic modulus of concrete samples had a trend of first increasing and then decreasing. The evolutionary process of transition from large pores to medium and small pores and then to large pores. In the early erosion stage, with increased MgSO4, corrosion products were deposited in pores and cracks, which refined the concrete pore structure and reduced ion diffusion speeds of Cl−, SO42−, and Mg2+. In the later erosion stage, corrosion products caused matrix damage and produced intersecting cracks, which promoted ion diffusion rates and induced deterioration of concrete macroscopic properties. During experiments, the binding ability of SO42− and Mg2+ ions to hydration products was found to be higher than that of Cl−.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10700364
  • Publié(e) le:
    10.12.2022
  • Modifié(e) le:
    15.02.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine