0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Study of Topology Optimized Hammerhead Pier Beam Made with Novel Preplaced Aggregate Fibrous Concrete

Auteur(s):





Médium: article de revue
Langue(s): anglais
Publié dans: Periodica Polytechnica Civil Engineering, , n. 1, v. 65
DOI: 10.3311/ppci.16905
Abstrait:

This study aims to study topology Optimized Hammerhead Pier Beam (TOHPB) designed with a density-based technique. TOHPB is made with Preplaced Aggregate Fibrous Concrete (PAFC), which comprises two main preparation processes. First, the fibers and coarse aggregates filled into empty formwork to develop a skeletal system. Second, voids in the skeletal system are filled with cement grout; hence a type of PAFC was obtained. Besides, alleviating the self-weight of the concrete beam is a top priority of design engineering without compromising its strength and durability. The effect of topology optimization in association with the safety of factors and elastic design case is considered in this study. Explicitly, (i) compliance is scaled down to a minimum under a perimeter on the utilized material (ii) the principle Drucker-Prager is employed to impose the stress limitations even though utilization of material is minimized. The problem is designed with imposed stress limitation and generates keys that involve an essential part of post-processing before fabrication. In total, ten TOHPB were prepared with and without the combined shape of crimped-hooked end steel fiber. Two different types of fiber reinforcement schemes were used; first, the fibers were reinforced to full beam cross-section; then, the fibers were reinforced to the top half of the beam cross-section. Results revealed that the TOHPB beam reinforced full cross-section exhibited better ultimate load performance than that of the beam with half reinforced cross-section.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3311/ppci.16905.
  • Informations
    sur cette fiche
  • Reference-ID
    10536292
  • Publié(e) le:
    01.01.2021
  • Modifié(e) le:
    27.09.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine