Study of the Mechanical Behavior of High-Strength Lightweight Concrete and Its Application to Bridge Pavements
Auteur(s): |
Qi Song
Yue Qin Chuantan Hou Hongwu Gao Mengzhao Li |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 25 août 2024, n. 9, v. 14 |
Page(s): | 2783 |
DOI: | 10.3390/buildings14092783 |
Abstrait: |
High-strength lightweight concrete (HSLC) is increasingly in demand for reducing the self-weight of concrete structures, achieved in this study using shale ceramsite aggregate. Despite its potential, HSLC has been underutilized in field projects due to concerns about its strength and long-term stability. This study investigates the impact of shale ceramsite content on the mechanical properties of HSLC through uniaxial compression, flexural, and bending tests. The results reveal that ceramsite content significantly influences the concrete’s mechanical properties and failure mechanisms. An optimal design of HSLC was proposed in this study and further used in a real field highway project, demonstrating its applicability to bridge pavements. Newly developed fiber Bragg grating sensors were installed in the material to monitor the performance of the HSLC. Concrete performance monitoring was conducted using a new type of fiber Bragg grating sensor independently developed by the research team. The results showed that the higher the ceramsite content, the greater the shrinkage deformation. And similarly, the higher the strength, the greater the shrinkage deformation. The outcome of this study would provide an alternative approach for the application of HSLC in civil infrastructures. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
8.84 MB
- Informations
sur cette fiche - Reference-ID
10799832 - Publié(e) le:
23.09.2024 - Modifié(e) le:
23.09.2024