0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

A Study of the Mechanical Behavior of a Steel–Concrete Hybrid Beam Bridge during Construction

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 7, v. 13
Page(s): 1781
DOI: 10.3390/buildings13071781
Abstrait:

To study the mechanical properties of steel–concrete joints during construction, the Mao Port Bridge in Shanghai is used as a case study. The mechanical properties of the bridge and the joint under the construction conditions were studied based on the site construction monitoring results, the finite element calculation of the entire bridge and the refined model of the joint. The results show that the finite element analysis of the bridge and the stress analysis of the joint during the construction phase agreed with the measured values, the end of block 0# of the main span remained in compression during construction and the compressive stresses varied in a zigzag pattern with the progress of construction. The lifting of the mid-span steel beam is a critical construction condition where the side spans of the girders are stretched upwards by 20.9 mm and the main spans are stretched downwards by 32.3 mm. When the steel beam was lifted, the joint was compressed as a whole. At the joint, the longitudinal stresses in the steel structure gradually decreased from the front bearing plate to the joint face, while the longitudinal stresses in the concrete structure gradually increased.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10737577
  • Publié(e) le:
    03.09.2023
  • Modifié(e) le:
    14.09.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine