0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Study of the Durability Damage of Ultrahigh Toughness Fiber Concrete Based on Grayscale Prediction and the Weibull Model

Auteur(s):







Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 6, v. 12
Page(s): 746
DOI: 10.3390/buildings12060746
Abstrait:

The purpose of this research is to investigate the durability damage law for ultrahigh toughness cementitious composites (UHTCCs) under freeze–thaw environments and impact resistance. In this study, UHTCCs with fiber length-to-diameter ratios of 5/30, 8/30, 12/20, 12/30 and 12/48 were tested for impact resistance and freeze–thaw cycles. The freeze–thaw cycle process and impact resistance process for UHTCC are comprehensively analyzed and evaluated in terms of mass loss, compressive strength loss, relative dynamic elastic modulus loss and impact resistance number. The freeze–thaw damage prediction model for the relative dynamic elastic modulus of the UHTCC is established based on the regularity of the measured data for the relative dynamic elastic modulus of UHTCC and also on the GM(1,1) power model. The accuracy and reliability of the GM(1,1) power model is analyzed using the relative error, absolute correlation degree, mean variance and probability of small errors. According to the evolution law of the impact resistance number of the UHTCC, the impact damage prediction model for UHTCC is established based on the Weibull distribution model, and the accuracy of the model is analyzed by using the decision coefficient R2. The results show that UHTCC has high durability performance, and the durability performance of UHTCC at a length-diameter ratio of 12/48 is optimal. The freeze–thaw damage evolution model and impact damage evolution model established in this research are sufficiently realistic, the average relative error of the GM(1,1) power model is less than 5%, and the coefficient of determination R2 of the Weibull distribution model is greater than 0.93, which effectively reflects the damage development process for concrete under freeze–thaw and impact environment with high fitting accuracy.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10679376
  • Publié(e) le:
    17.06.2022
  • Modifié(e) le:
    10.11.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine