Studies on Static Frictional Contact Problems of Double Cantilever Beam Based on SBFEM
Auteur(s): |
Zhu Chaolei
Gao Qian Hu Zhiqiang Lin Gao Lu Jingzhou |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | The Open Civil Engineering Journal, décembre 2017, n. 1, v. 11 |
Page(s): | 896-905 |
DOI: | 10.2174/1874149501711010896 |
Abstrait: |
Introduction:The frictional contact problem is one of the most important and challenging topics in solids mechanics, and often encountered in the practical engineering. Method:The nonlinearity and non-smooth properties result in that the convergent solutions can't be obtained by the widely used trial-error iteration method. Mathematical Programming which has good convergence properties and rigorous mathematical foundation is an effective alternative solution method, in which, the frictional contact conditions can be expressed as Non-smooth Equations, B-differential equations, Nonlinear Complementary Problem,etc. Result:In this paper, static frictional contact problems of double cantilever beam are analyzed by Mathematical Programming in the framework of Scaled Boundary Finite Element Method (SBFEM), in which the contact conditions can be expressed as the B-differential Equations. ConclusionThe contact forces and the deformation with different friction factors are solved and compared with those obtained by ANSYS, by which the accuracy of solving contact problems by SBFEM and B-differential Equations is validated. |
Copyright: | © 2017 Zhu Chaolei et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.43 MB
- Informations
sur cette fiche - Reference-ID
10175214 - Publié(e) le:
02.08.2019 - Modifié(e) le:
02.06.2021