Structural Landmark Salience Computation in Compact Urban Districts with 3D Node-Landmark Grid Analysis Model: A Case Study on Two Sample Districts in Changsha, China
Auteur(s): |
Yang Guo
Xijun Hu Jia Tang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 24 mars 2023, n. 4, v. 13 |
Page(s): | 1024 |
DOI: | 10.3390/buildings13041024 |
Abstrait: |
Mastering the relationship between urban landmarks and urban space morphology in urban planning, landscape planning, and architectural design helps maintain the intelligibility of compact urban districts. The objective of the present study was to numerically determine the structural salience of various landmarks in an urban environment and use it to interpret the intelligibility of the city. Combining the measurement method of 3D visibility and the related principles of space syntax, this study develops a new 3D Node–Landmark Grid Analysis Model (3D NL GAM) for structural salience computation of urban landmarks. In this study, a numerical approach is used to construct a 3D simulation model. Firstly, the visibility of each decision node to landmarks in an urban environment, using a 3D digital model, is measured using the 3D isovist component of Rhinoceros and Grasshopper software. Secondly, links among wayfinding decision nodes and landmarks are established to form a 3D NL GAM. The normalized angular integration of decision nodes and the normalized angular choice of landmarks are computed using the principle of space syntax. Thirdly, the structural salience of landmarks is determined with a function of landmark visibility, spatial properties of landmarks, and wayfinding decision nodes. Finally, a case study was carried out by using a 3D NL GAM to analyze three types of urban areas located in Changsha. The results indicated that large-scale natural landscapes have a higher structural salience among the types of landmarks. The structural salience of architectural landmarks in the combined spatial form of combining tall and low building groups has a clear advantage over the form dominated by high-rise building groups. Raising the height of landmark buildings can modify the structure of the grid analysis model and improve the people aggregation of urban space. The 3D NL GAM can quantify the spatial properties and landmark structural salience of a city and can effectively assist in the evaluation of the intelligibility of built or future urban environments. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
15.7 MB
- Informations
sur cette fiche - Reference-ID
10728048 - Publié(e) le:
30.05.2023 - Modifié(e) le:
01.06.2023