0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Structural Corrosion Health Assessment using Computational Intelligence Methods

Auteur(s):
Médium: article de revue
Langue(s): anglais
Publié dans: Structural Health Monitoring, , n. 3, v. 6
Page(s): 245-259
DOI: 10.1177/1475921707081975
Abstrait:

Corrosion greatly affects the integrity of many engineering structures, such as bridges, pipelines, nuclear reactors, and aircraft. This study provides an overview of the computational intelligence methods developed for the corrosion damage assessment of aerospace materials and structures. Specifically, cellular automata modeling of corrosion pit initiation and growth, wavelet based image processing methods for corrosion damage assessment, and artificial neural networks (ANNs) for material loss and residual strength predictions. In addition, ANN based prediction of life due to corrosion-fatigue conditions are considered and presented. Results obtained from selected computational intelligence methods are compared to the existing alternate solutions and experimental data. The results presented illustrate the feasibility of computational intelligence methods for modeling and assessing the corrosion health of aging aircraft structures and materials.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/1475921707081975.
  • Informations
    sur cette fiche
  • Reference-ID
    10561564
  • Publié(e) le:
    11.02.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine