Stress Analysis of Segmental Tunnel Lining Using Artificial Neural Network
Auteur(s): |
Armin Rastbood
Yaghoob Gholipour Abbas Majdi |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Periodica Polytechnica Civil Engineering |
DOI: | 10.3311/ppci.9700 |
Abstrait: |
The paper describes an artificial neural network method(ANNM) to predict the stresses executed on segmental tunnellining. An ANN using multi-layer perceptron (MLP) is developed.At first, database resulted from numerical analyses wasprepared. This includes; depth of cover (H), horizontal to verticalstress ratio (K), thickness of segment (t), Young modulus ofsegment (E) and key segment position in each ring (θ) on thetunnel perimeter as input variables. Different types of stressesand extreme values of displacement have been considered asoutput parameters. Sensitivity analysis showed that the coverof the tunnel and key position are the most and less effectiveinput variables on output parameters, respectively. Resultsfor coefficient of determination (R2), variance accounted for(VAF), coefficient of efficiency (CE) and root mean squarederror (RMSE) illustrates a high accuracy of the presented ANNmodel to predict the stress types and displacements of segmentaltunnel lining. |
- Informations
sur cette fiche - Reference-ID
10536678 - Publié(e) le:
01.01.2021 - Modifié(e) le:
19.02.2021