0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Stress Analysis of Segmental Tunnel Lining Using Artificial Neural Network

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Periodica Polytechnica Civil Engineering
DOI: 10.3311/ppci.9700
Abstrait:

The paper describes an artificial neural network method(ANNM) to predict the stresses executed on segmental tunnellining. An ANN using multi-layer perceptron (MLP) is developed.At first, database resulted from numerical analyses wasprepared. This includes; depth of cover (H), horizontal to verticalstress ratio (K), thickness of segment (t), Young modulus ofsegment (E) and key segment position in each ring (θ) on thetunnel perimeter as input variables. Different types of stressesand extreme values of displacement have been considered asoutput parameters. Sensitivity analysis showed that the coverof the tunnel and key position are the most and less effectiveinput variables on output parameters, respectively. Resultsfor coefficient of determination (R2), variance accounted for(VAF), coefficient of efficiency (CE) and root mean squarederror (RMSE) illustrates a high accuracy of the presented ANNmodel to predict the stress types and displacements of segmentaltunnel lining.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.3311/ppci.9700.
  • Informations
    sur cette fiche
  • Reference-ID
    10536678
  • Publié(e) le:
    01.01.2021
  • Modifié(e) le:
    19.02.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine