0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Stochastic Stability of Gyroscopic Systems Under Bounded Noise Excitation

Auteur(s):
Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 2, v. 18
Page(s): 1850022
DOI: 10.1142/s0219455418500220
Abstrait:

Dynamic stochastic stability of a two-degree-of-freedom gyroscopic system under bounded noise parametric excitation is studied in this paper through moment Lyapunov exponent and the largest Lyapunov exponent. A rotating shaft subject to stochastically fluctuating thrust is taken as a typical example. To obtain these two exponents, the gyroscopic differential equation of motion is first decoupled into Itô stochastic differential equations by using the method of stochastic averaging. Then mathematical transformations are used in these Itô equation to obtain a partial differential eigenvalue problem governing moment Lyapunov exponents, the slope of which at the origin is equal to the largest Lyapunov exponent. Depending upon the numerical relationship between the natural frequency and the excitation frequencies, the gyroscopic system may fall into four types of parametric resonance, i.e. no resonance, subharmonic resonance, combination additive resonance, and combination differential resonance. The effects of noise and frequency detuning parameters on the parametric resonance are investigated. The results pave the way to utilize or control the vibration of gyroscopic systems under stochastic excitation.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455418500220.
  • Informations
    sur cette fiche
  • Reference-ID
    10352272
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    14.08.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine