0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Stochastic Stability of a Planner Gyropendulum System with Synchronous Motor Driven by Gaussian White Noises

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: International Journal of Structural Stability and Dynamics, , n. 10, v. 19
Page(s): 1971006
DOI: 10.1142/s0219455419710068
Abstrait:

In this paper, the stochastic moment stability and almost-sure stability of a planner gyropendulum system with synchronous motor under the white noises are investigated. By applying the theory of diffusion process, an eigenvalue problem for the moment Lyapunov exponent is formulated. Then, through a perturbation method and a Fourier cosine series expansion, the second-order expansion of the moment Lyapunov exponent is solved, which is just the leading eigenvalue of an infinite matrix. Finally, the convergence and validity of the procedure are numerically verified, and the effects of system and noise parameters on the moment Lyapunov exponent are discussed. It was found that the increase in both the noise intensity and coefficient of the synchronous motor torque will weaken the stability of the gyropendulum system, and when they reach certain values, the system becomes unstable. In addition, according to the relationship between the moment Lyapunov exponent and maximal Lyapunov exponent, the stable thresholds are also given.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1142/s0219455419710068.
  • Informations
    sur cette fiche
  • Reference-ID
    10344582
  • Publié(e) le:
    14.08.2019
  • Modifié(e) le:
    06.10.2019
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine