0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Steel Fibre Reinforcing Characteristics on the Size Reduction of Fly Ash Based Concrete

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2014
Page(s): 1-11
DOI: 10.1155/2014/217473
Abstrait:

The behavior of glued steel fibres in high strength concrete with size reduction properties of concrete has been attempted. Glued steel fibres with both ends hooked having length to diameter ratio of 70 was added at a dosage level of 0.5% to 1.5% by volume fraction. The study was carried out to analyze the effects of fibre addition on the thickness reduction of concrete element. A high strength concrete mixture was designed and various thicknesses of concrete prisms were casted for different volume fraction of steel fibres. The hardened concrete properties were determined based on the mix constituents such as water to binder ratio 0.3 (w/b), superplasticizer dosage, fine to coarse aggregate ratio 0.6 (F/c), and fly ash replacement level at 25% and 50% by weight of binder content. The experimental test results showed that the flexural strength varies with respect to the depth of concrete specimen. It can be observed that the reduction in size up to 10% size containing 25% fly ash with 1.5% steel fibres showed better strength enhancement of 4.70 MPa and 6.69 MPa for 7 days and 28 days, respectively. Also, the addition of steel fibres at higher percentage of fly ash containing 50% showed better improvement in the flexural strength for the size reduction at 5%, when compared to plain concrete beam which exhibited higher stress carrying capacity of 6.08 MPa at 28 days and showed an increase of 7.99%.

Copyright: © 2014 Sounthararajan Vallarasu Manoharan et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 3.0 (CC-BY 3.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée.

  • Informations
    sur cette fiche
  • Reference-ID
    10176937
  • Publié(e) le:
    07.12.2018
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine