0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Static Bending Mechanical Properties of Prestressed Concrete Composite Slab with Removable Rectangular Steel-Tube Lattice Girders

Auteur(s):
ORCID



Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 5, v. 14
Page(s): 1187
DOI: 10.3390/buildings14051187
Abstrait:

In recent years, with the development of building technology, the Chinese construction industry has begun to gradually promote the prefabricated buildings to save on construction costs. Among them, composite slabs, as essential components of prefabricated buildings, have been widely used by designers mainly in favor of their low cost. However, is it possible to further reduce the cost without affecting the quality? Researchers think so if the operation cycle of support from the bottom of composite slabs can accelerate and the mechanical properties of their bottom plate can be optimized. To prove this hypothesis, researchers proposed a new type of prestressed concrete composite slab with removable rectangular steel-tube lattice girders (referred to as CDB composite slabs), whose bottom plate consists of a temporary structure composed of a prestressed concrete prefabricated plate and removable rectangular steel-tube lattice girders. Through static bending performance tests on three prefabricated bottom plates and one composite slab, researchers measured corresponding load-displacement curves, load-strain curves, crack development, and distribution, etc. The test results show that the top chord rectangular steel tubes connected to the bottom plate concrete through web reinforcement bars significantly improve the rigidity, crack resistance, and load-bearing capacity of the bottom plate and possess better ductility and out-of-plane stability. The number of supports at the bottom of the bottom plate is effectively reduced, with the maximum unsupported span reaching 4.8 m. Beyond 4.8 m, only one additional support is needed, and the maximum support span can be up to 9.0 m, which provides space for cost reduction. The cooperative load-bearing performance of the prefabricated bottom plate and the post-cast composite layer concrete is good. The top chord rectangular steel tubes are easy to dismantle and can be reused, which reduces the steel consumption by about 24% compared to that used for the same size of ordinary steel-tube lattice-girder concrete composite slabs. It can greatly decrease the cost. In conclusion, the results have shown that the new method researchers proposed here is practically applicable and also provides great space to save on financial costs.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10774021
  • Publié(e) le:
    29.04.2024
  • Modifié(e) le:
    05.06.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine