State-Based Technical Condition Assessment and Prediction of Concrete Box Girder Bridges
Auteur(s): |
Zewen Zhu
Kuai Ye Xinhua Yu Zefang Lin Gangzong Xu Zhenyou Guo Shoushan Lu Biao Nie Huapeng Chen |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 1 février 2024, n. 2, v. 14 |
Page(s): | 543 |
DOI: | 10.3390/buildings14020543 |
Abstrait: |
The technical condition of bridges has become a crucial issue for organizing the maintenance and repairs in bridge management systems. It is of great practical engineering significance to construct an effective model for predicting the technical condition degradation of the bridge through the use of the historical inspection data. Based on the semi-Markov random process, this paper proposes a useful deterioration prediction model for bridges in the highway network. From the historical inspection data of the prefabricated concrete box girder bridges, the degradation curves of technical condition rating are obtained. The effect of bridge length on degradation rate of the prefabricated concrete box girder bridges is analyzed. According to the Weibull distribution parameters of different condition grades, the technical state degradation models for a bridge group and an individual bridge are proposed to predict the performance of the overall bridge and superstructure of the bridge. The results show that with the increase in bridge length, the degradation rate of bridge technical condition increases. The degradation rate of the technical condition of the superstructure is faster than that of the overall bridge. The proposed semi-Markov stochastic degradation model for the bridge group can not only predict the different condition ratings of the bridges at any time, but also predict the future deterioration trend of an individual bridge under any ratings. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
6.7 MB
- Informations
sur cette fiche - Reference-ID
10773313 - Publié(e) le:
29.04.2024 - Modifié(e) le:
05.06.2024