A Space Fractional Uphill Dispersion in Traffic Flow Model with Solutions by the Trial Equation Method
Auteur(s): |
Rfaat Moner Soliby
(Department of Mathematics and Statistics, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Educational Hub, Johor Bahru 84600, Malaysia)
Siti Suhana Jamaian (Department of Mathematics and Statistics, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Educational Hub, Johor Bahru 84600, Malaysia) |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Infrastructures, mars 2023, n. 3, v. 8 |
Page(s): | 45 |
DOI: | 10.3390/infrastructures8030045 |
Abstrait: |
This paper has two main objectives. First, we modify the traffic flow model by introducing the uphill dispersion that derives from the fact that, in peak hours, drivers tend to travel from low to high density regions. This means that the proposed model recovers wrong-way travel and is free from advected discontinuity. Second, in order to describe the anomalous transport behavior, we fractalize the proposed model to include dynamics with the fractional in space. As a result of adopting the fractional Fick’s law, several moving jam waves are presented which elucidate the non-homogeneity of driving styles. Then, the GFFD fractional derivative and the trail equation method are applied and for some special cases solutions are simulated which could help transportation engineers to understand traffic behavior and thus make appropriate decisions when constructing a traffic signals network. |
Copyright: | © 2023 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.53 MB
- Informations
sur cette fiche - Reference-ID
10722726 - Publié(e) le:
22.04.2023 - Modifié(e) le:
10.05.2023