Soil Unconfined Compressive Strength Prediction Using Random Forest (RF) Machine Learning Model
Auteur(s): |
Hai-Bang Ly
Binh Thai Pham |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | The Open Construction and Building Technology Journal, 18 février 2020, n. 1, v. 14 |
Page(s): | 278-285 |
DOI: | 10.2174/1874836802014010278 |
Abstrait: |
Aims:Understanding the mechanical performance and applicability of soils is crucial in geotechnical engineering applications. This study investigated the possibility of application of the Random Forest (RF) algorithm – a popular machine learning method to predict the soil unconfined compressive strength (UCS), which is one of the most important mechanical properties of soils. Methods:A total number of 118 samples collected and their tests derived from the laboratorial experiments carried out under the Long Phu 1 power plant project, Vietnam. Data used for modeling includes clay content, moisture content, specific gravity, void ratio, liquid limit and plastic limit as input variables, whereas the target is the UCS. Several assessment criteria were used for evaluating the RF model, namely the correlation coefficient (R), root mean squared error (RMSE) and mean absolute error (MAE). Results:The results showed that RF exhibited a strong capability to predict the UCS, with the R value of 0.914 and 0.848 for the training and testing datasets, respectively. Finally, a sensitivity analysis was conducted to reveal the importance of input parameters to the prediction of UCS using RF. The specific gravity was found as the most affecting variable, following by clay content, liquid limit, plastic limit, moisture content and void ratio. Conclusion:This study might help in the accurate and quick prediction of the UCS for practice purpose. |
Copyright: | © 2020 Hai-Bang Ly, Binh Thai Pham |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.27 MB
- Informations
sur cette fiche - Reference-ID
10443627 - Publié(e) le:
05.10.2020 - Modifié(e) le:
02.06.2021