Simulation of the Damage Process in Quasi-Brittle Materials by a Modified Finite Element Method Using the Consistent Embedded Discontinuity Formulation
Auteur(s): |
J. Retama
A. G. Ayala |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2020, v. 2020 |
Page(s): | 1-13 |
DOI: | 10.1155/2020/7125451 |
Abstrait: |
This paper investigates the variational finite element formulation and its numerical implementation of the damage evolution in solids, using a new discrete embedded discontinuity approach. For this purpose, the kinematically optimal symmetric (KOS) formulation, which guarantees kinematics, is consistently derived. In this formulation, rigid body motion of the parts in which the element is divided is obtained. To guarantee equilibrium at the discontinuity surfaces, the length of the discontinuity is introduced in the numerical implementation at elemental level. To illustrate and validate this approach, two examples, involving mode-I failure, are presented. Numerical results are compared with those reported from experimental tests. The presented discontinuity formulation shows a robust finite element method to simulate the damage evolution processes in quasi-brittle materials, without modifying the mesh topology when cohesive cracks propagate. |
Copyright: | © J. Retama and A. G. Ayala et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
2.3 MB
- Informations
sur cette fiche - Reference-ID
10526027 - Publié(e) le:
11.12.2020 - Modifié(e) le:
02.06.2021