A Simplified Inverse Analysis Procedure for the Stress-Crack Opening Relationship of Fiber-Reinforced Concrete
Auteur(s): |
Pedro Paulo Martins de Carvalho
Rodrigo de Melo Lameiras |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 27 avril 2023, n. 5, v. 13 |
Page(s): | 1166 |
DOI: | 10.3390/buildings13051166 |
Abstrait: |
The direct tensile test (DTT) is the most recommended test to determine the tensile behavior of fiber-reinforced concrete (FRC). However, this test is challenging to perform. Several studies have investigated inverse analysis to determine this behavior through simplified tests, such as the bending test. This study deals with developing a new approach to perform an inverse analysis for the three-point bending test (3PBT) involving FRC. A new proposed methodology concerns carrying out the inverse analysis procedure by parts. Initially, the parameters that influence the initial part of the stress–crack opening curve are adjusted. Progressively, the other parameters are adjusted considering the increment of the curve section. This procedure provides an implemented algorithm with more efficiency. A new strategy that deals with the establishment of criteria for parameters is proposed. Its results are compared with experimental data from other literature, whose steel fiber-reinforced concrete (SFRC) tested characteristics present different attributes such as fibers, shape, and length. The proposed methodology obtained the stress–crack opening curves in direct tension with reasonable accuracy, indicating that this methodology can be helpful in the characterization of the post-cracking FRC behavior. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
4.99 MB
- Informations
sur cette fiche - Reference-ID
10728371 - Publié(e) le:
30.05.2023 - Modifié(e) le:
01.06.2023