Simplified-Boost Reinforced Model-Based Complex Wind Signal Forecasting
Auteur(s): |
Qiushuang Lin
Chunxiang Li Chao Wu |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2020, v. 2020 |
Page(s): | 1-16 |
DOI: | 10.1155/2020/9564287 |
Abstrait: |
Wind signal forecasting has become more and more crucial in the structural health monitoring system and wind engineering recently. It is a challenging subject owing to the complicated volatility of wind signals. The robustness and generalization of a predictor are significant as well as of high precision. In this paper, an adaptive residual convolutional neural network (CNN) is developed, aiming at achieving not only high precision but also high adaptivity for various wind signals with varying complexity. Afterwards, reinforced forecasting is adopted to enhance the robustness of the preliminary forecasting. The preliminary forecast results by adaptive residual CNN are integrated with historical observed signals as the new input to reconstruct a new forecasting mapping. Meanwhile, simplified-boost strategy is applied for more generalized results. The results of multistep forecasting for five kinds of nonstationary non-Gaussian wind signals prove the more excellent adaptivity and robustness of the developed two-stage model compared with single models. |
Copyright: | © Qiushuang Lin et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
8.07 MB
- Informations
sur cette fiche - Reference-ID
10444046 - Publié(e) le:
05.10.2020 - Modifié(e) le:
02.06.2021