0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Auteur(s):




Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2020
Page(s): 1-12
DOI: 10.1155/2020/9562828
Abstrait:

In order to improve the accuracy of shield tunneling parameter matching under the limited data, the matching model based on support vector machine (SVM) and exponential adjustment inertia weight immune particle swarm optimization (EAIW-IPSO) is proposed. The nonlinear relationship model between the tunneling parameters and the ground settlement is constructed by SVM and trained with the actual engineering sample data. Based on the trained model, EAIW-IPSO is used to optimize the tunneling parameters. At the same time, UI interface was developed based on the tunneling parameter matching model. The matching model based on BP neural network and PSO algorithm is compared in simulation experiments and engineering case. It is verified that the matching model based on SVM and EAIW-IPSO still maintains great accuracy and stability as the number of samples continues to decrease. The paper provides a better solution for the matching of tunneling parameters in actual engineering.

Copyright: © 2020 Gongyu Hou et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10414072
  • Publié(e) le:
    26.02.2020
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine