Shield Tunneling Parameter Matching Model and UI Interface
Auteur(s): |
Gongyu Hou
Zhedong Xu Le Li Xiaoge Quan Yajie Yang |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Advances in Civil Engineering, janvier 2020, v. 2020 |
Page(s): | 1-12 |
DOI: | 10.1155/2020/9562828 |
Abstrait: |
In order to improve the accuracy of shield tunneling parameter matching under the limited data, the matching model based on support vector machine (SVM) and exponential adjustment inertia weight immune particle swarm optimization (EAIW-IPSO) is proposed. The nonlinear relationship model between the tunneling parameters and the ground settlement is constructed by SVM and trained with the actual engineering sample data. Based on the trained model, EAIW-IPSO is used to optimize the tunneling parameters. At the same time, UI interface was developed based on the tunneling parameter matching model. The matching model based on BP neural network and PSO algorithm is compared in simulation experiments and engineering case. It is verified that the matching model based on SVM and EAIW-IPSO still maintains great accuracy and stability as the number of samples continues to decrease. The paper provides a better solution for the matching of tunneling parameters in actual engineering. |
Copyright: | © 2020 Gongyu Hou et al. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.15 MB
- Informations
sur cette fiche - Reference-ID
10414072 - Publié(e) le:
26.02.2020 - Modifié(e) le:
02.06.2021