0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Shear Characteristics and Strength Criterion of Frozen Joints under Different Opening Degrees

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-13
DOI: 10.1155/2021/6636968
Abstrait:

Samples of rock coupling joints were collected from the Jiangluling Tunnel of the G214 line in Qinghai province. Models with surface topographies similar to these joints were manually created. Freezing shear tests under different normal stress conditions were conducted to study the shear mechanical properties of these models. On this basis, the integral form of the peak shear strength criterion of frozen joints was proposed. Results show that the shear process of the ice layer can be divided into four stages, namely, initial deformation, continuously increasing shear stress, ice shearing, and residual shear. During the continuously increasing shear stress stage, the stress-strain curve is concave, and elastic deformation is not evident. Furthermore, the increase rate of shear stress generally rises as normal stress intensifies. In the ice shearing stage, shear stress does not decrease instantaneously, but plastic deformation is now detectable. When the opening degree is greater than the undulation difference of the joint surface under the action of all levels of normal stress, the shear stress in the ice sharply increases and drops due to local failure and reicing. Then, evident difference between the shear processes under freezing and normal temperature conditions was then obtained. On this basis, the failure forms of joint surfaces, theory of ice adhesion strength under different opening degrees and morphologies, and the shear failure forms of frozen joints under different conditions were considered. The integral form of the peak shear strength criterion of frozen joints was proposed. These results can lay a theoretical foundation for the stability analysis of rock mass engineering in permafrost areas.

Copyright: © Shiwei Shen et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10560655
  • Publié(e) le:
    03.02.2021
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine