0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Shear Capacity Prediction Model of Deep Beam Based on New Hybrid Intelligent Algorithm

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 6, v. 13
Page(s): 1395
DOI: 10.3390/buildings13061395
Abstrait:

Accurate shear load capacity predictions are crucial to achieving the load-bearing requirements of concrete deep beams in a variety of construction structures. Conventional BP neural networks have the drawbacks of being prone to local optimums and having a sluggish rate of convergence for predicting the shear load capacity of reinforced concrete deep beams. To overcome this problem, this study incorporated the black widow optimization algorithm (BWO) and principal component analysis (PCA) into a BP neural network to create a unique Hybrid Intelligent Optimization Algorithm (PCA-BWO-BP). Firstly, PCA was used to reduce the dimensionality of the input variables of the shear load capacity prediction model of reinforced concrete deep beams. Secondly, BWO was introduced to optimize the weights and thresholds of the BP neural network. Finally, the four algorithms were compared and validated through the use of five model evaluators. The results showed that the PCA-BWO-BP model can explore the intrinsic relationship between member size, bottom longitudinal reinforcement, hoop reinforcement, concrete strength and the shear load capacity of reinforced concrete deep beams and generate reasonable prediction values, and the complexity of the prediction model can be effectively reduced by introducing the PCA algorithm, whereas the BWO algorithm can optimize the weights and thresholds of the BP neural network to improve the convergence and global search ability of the model. The mean absolute percentage error (MAPE) of the PCA-BWO-BP algorithm is 5.126, and the Nash efficiency coefficient (NS) is 0.989. The generalization ability and prediction accuracy are significantly better than those of the BP neural network, which can solve the problem relating to the fact that BP neural networks are prone to falling into the local optimum. The PCA-BWO-BP model has strong prediction ability, stability, generalization ability and robustness, which can predict the shear load capacity of reinforced concrete deep beams more accurately. It provides a new method and case support for further research on the shear bearing capacity of reinforced concrete deep beams.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10728281
  • Publié(e) le:
    30.05.2023
  • Modifié(e) le:
    01.06.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine