Shape-programmable cantilever made of a magnetoactive elastomer of mixed content
Auteur(s): |
T. I. Becker
O. V. Stolbov A. M. Biller D. Yu Borin O. S. Stolbova K. Zimmermann Yu L. Raikher |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Smart Materials and Structures, 30 août 2022, n. 10, v. 31 |
Page(s): | 105021 |
DOI: | 10.1088/1361-665x/ac8f79 |
Abstrait: |
This work presents an approach to the macroscopic field-controlled mechanics of magnetoactive elastomers of mixed content, which are a special type of smart materials made of an elastic composite and a combination of two essentially different ferromagnetic fillers. High-coercive particles of NdFeB-alloy powder for the magnetically hard (MH) filler and carbonyl iron powder particles with nearly zero coercivity for the magnetically soft (MS) filler are usually used. The MH particles are tens-of-micron in size and impart to the elastomer a remanent magnetisation, whereas due to the MS particles of several microns in size, the elastomer acquires a high magnetic susceptibility. Since large MH particles once magnetised in a strong field possess their own fields to which the MS particles are susceptible, the overall elastomer magnetisation as well as its mechanical response greatly depends on the relative concentration of both fillers. This work particularly studies the bending deformation of horizontally fixed magnetoactive cantilevers with the permanent magnetisation along the length axis under the action of gravity and a vertically applied uniform magnetic field. The cantilevers of the same geometry and fixed NdFeB content but different carbonyl iron concentration are considered. The magnetomechanical model is developed based on the finite-strain theory assuming the plane-stress approximation of the two-dimensional cantilever of infinite width. The magnetic energy comprises two magnetic terms, one of which is qualitatively linear and the other one is quadratic in the applied field strength. The numerically calculated field-programmed equilibrium bending shapes of the cantilevers are compared with the experimentally observed shapes. The model provides good agreement with the experiment up to moderate concentrations of the MS filler, when the coefficients of customary interpolation formulas for the concentration dependencies of elastic modulus and magnetic susceptibility are properly adjusted. |
Copyright: | © 2022 T I Becker, O V Stolbov, A M Biller, D Yu Borin, O S Stolbova, K Zimmermann, Yu L Raikher |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
1.49 MB
- Informations
sur cette fiche - Reference-ID
10690614 - Publié(e) le:
23.09.2022 - Modifié(e) le:
07.02.2024