0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Shaking Table Test of a Base-Isolated Frame Structure under Near-Fault Ground Motions

Auteur(s):







Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 12
Page(s): 2258
DOI: 10.3390/buildings12122258
Abstrait:

A five-story moment frame structural model with a base isolation system was tested on a shaking table. The isolation system comprised both linear natural rubber bearing (LNR) and nonlinear viscous dampers (NLVDs). Seven ground motions were employed: including three far-fault (FF) and four near-fault (NF) earthquake ground motions. The performance of the isolation system was evaluated by measuring the displacement and base shear of the isolation bearings. Furthermore, the axial force and displacement of the NLVDs were measured. The evolution of the fundamental dynamic frequency of the frame during the test was also determined. During strong earthquakes, NF ground motions caused larger story drifts and floor accelerations of the superstructure than FF ground motions. The displacement and base shear of the isolation base was very large when the isolated structure was subjected to Kobe_TAK000 and ChiChi_TCU102/278 pulse-like NF ground motions. Furthermore, the LNR s experienced tension and uplift when the PGA of input earthquake ground motions was larger than 0.80 g. Although the NLVDs performed very well in combination with the LNRs, the severe responses of the isolation bearings were caused by NF ground motion with a pulse period Tp neighboring the fundamental period of the isolated structure.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10712719
  • Publié(e) le:
    21.03.2023
  • Modifié(e) le:
    10.05.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine