0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Seismic Response of Prestressed Self-Centering Moment-Resisting Frames

Auteur(s):
ORCID


Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 12, v. 14
Page(s): 3811
DOI: 10.3390/buildings14123811
Abstrait:

This paper aims to examine the seismic response of prestressed self-centering moment-resisting frames (PSC-MRFs) based on concrete-filled double steel tubular (CFDST) columns and RC beams. The beam of this novel connection is divided into two parts, connected by bolts and tendons, and the beam includes a gap opening feature, which could be regarded as a normal single beam in the field. Cyclic loading analysis was performed on one-story frames with different initial parameters arranged in adjacent bays. Nonlinear dynamic analysis was conducted on a six-story frame under two seismic hazard levels. The cyclic loading analysis showed favorable self-centering performance of the frame even when the hysteretic energy dissipation ratio reached 0.808. Seismic analysis results showed that compared with the in situ reinforced concrete frame, PSC-MRFs generally had similar maximum inter-story drifts under fortification earthquakes, but the residual inter-story drifts were reduced by 33%; under rare earthquakes, the maximum inter-story drifts and residual inter-story drifts of PSC-MRFs were reduced by 22% and more than 90%, respectively. In the adjacent bays on the same story of PSC-MRFs, connections with smaller imminent moments of gap opening opened earlier under earthquake, and the maximum opening angle was larger. The general seismic performance and self-centering of PSC-MRFs was significantly more advantageous than that of in situ reinforced concrete frames.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10810711
  • Publié(e) le:
    17.01.2025
  • Modifié(e) le:
    25.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine